
Finding Property Violations through Network Falsification:
Challenges, Adaptations and Lessons Learned from OpenPilot

Meriel von Stein
meriel@virginia.edu
University of Virginia

Charlottesville, VA, United States

Sebastian G. Elbaum
selbaum@virginia.edu
University of Virginia

Charlottesville, VA, United States

ABSTRACT
Openpilot is an open source system to assist drivers by providing
features like automated lane centering and adaptive cruise control.
Like most systems for autonomous vehicles, Openpilot relies on
a sophisticated deep neural network (DNN) to provide its func-
tionality, one that is susceptible to safety property violations that
can lead to crashes. To uncover such potential violations before de-
ployment, we investigate the use of falsification, a form of directed
testing that analyzes a DNN to generate an input that will cause a
safety property violation. Specifically, we explore the application of
a state-of-the-art falsifier to the DNN used in OpenPilot, which re-
flects recent trends in network design. Our investigation reveals the
challenges in applying such falsifiers to real-world DNNs, conveys
our engineering efforts to overcome such challenges, and show-
cases the potential of falsifiers to detect property violations and
provide meaningful counterexamples. Finally, we summarize the
lessons learned as well as the pending challenges for falsifiers to
realize their potential on systems like OpenPilot.

KEYWORDS
testing, autonomous systems, adversarial examples, falsification,
formal methods, neural nets

ACM Reference Format:
Meriel von Stein and Sebastian G. Elbaum. 2022. Finding Property Viola-
tions through Network Falsification: Challenges, Adaptations and Lessons
Learned fromOpenPilot . In 37th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3551349.3559500

1 INTRODUCTION
In 2016, comma.ai unveiled OpenPilot, one of the first open-source
systems for self-driving vehicles that today forms part of a commu-
nity [12, 14] competing with their commercial counterparts [7, 16].
OpenPilot enables vehicles with Automated Lane Centering, Adap-
tive Cruise Control, Forward Collision Warning, and Lane Depar-
ture Warning. These features assist drivers in limited contexts,
prioritizing highway driving [11]. Since its inception, OpenPilot
has grown to support over 150 commercial vehicles. Its userbase

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9475-8/22/10.
https://doi.org/10.1145/3551349.3559500

has grown substantially, with over 2,750 new users a week by the
end of 2020 [6] and the recent debut of the Comma 3 device.

OpenPilot autonomy relies heavily on the supercombo DNN, an
end-to-end driving model for making predictions about various
features of the driving environment, including: optimal paths over
upcoming timesteps, position and probability of lead cars, locations
of lane lines and road edges, and the probability of OpenPilot disen-
gagement, braking, and acceleration. Model inputs are taken from
camera sensors, human input to the system, system configuration,
and recurrent system state. supercombo predictions are used by
many different parts of the OpenPilot software, such as lateral (turn-
ing) and longitudinal (gas/brake) planning and identifying driving
events such as laneChange or roadCameraError.

The functionality of OpenPilot depends on images that can be re-
liably interpreted by the supercombo network. To maintain safe op-
eration, network output must conform to certain safety properties.
One such property might specify that adding a low level of noise
to a camera image input should not change lane line predictions
by more than 1

4 standard lane width. To test these properties, DNN
falsification aims to uncover violations related to the robustness of
DNN predictions. Falsification techniques extend adversarial exam-
ple generation approaches to find violations to safety properties
within some measure of local robustness [1–5, 8, 15, 17]. Falsifiers
take in a network and a safety property and attempt to find a vio-
lation of that property, resulting in either a counterexample or a
timeout. For the previous property associated with lane line pre-
diction, a counterexample would consist of an image plus minimal
noise that causes supercombo to predict lane lines that deviate by
over 1

4 lane width from predictions on the original image.
Recent studies involving falsifiers illustrate their potential to find

counterexamples for valuable safety properties [13]. However, the
networks in these studies do not capture the complexity of DNNs
encountered in autonomous vehicles such as supercombo, as well
as other real-world applications of DNNs at scale. Moreover, recent
complex networks often involve multi-dimensional inputs and out-
puts with inherent dependencies that require more sophisticated
properties than early falsifiers can represent. In this work we:

• Analyze the challenges in applying a state-of-the-art falsi-
fication framework, DNNF [13], to a state-of-the-art DNN
for autonomous vehicles, supercombo. Our analysis reveals
that recent DNNs introduce conceptual issues beyond scale
and format that challenge today’s falsifiers, such as multiple
inputs, multi-dimensional outputs, and complex operators
and architecture.

• Extend DNNF to enable its application to a set of safety prop-
erties of supercombo and perform a study illustrating the

https://doi.org/10.1145/3551349.3559500
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3551349.3559500


ASE ’22, October 10–14, 2022, Rochester, MI, USA Meriel von Stein and Sebastian G. Elbaum

Figure 1: Approach Overview. Extended functionality is
shown in yellow stripes.

potential for falsification to uncover meaningful counterex-
amples that will lead to violations.

• Collect lessons learned from our analysis, application, and
tool extension, as well as a recognition of the challenges
that remain for falsification to be more broadly deployed on
DNNs used in autonomous vehicles.

2 OBSERVATIONS AND CHALLENGES IN
FALSIFYING SUPERCOMBO

The supercombomodel is a large-scale, multi-input network with a
relatively complex architecture. It consists of a series of 70 convolu-
tional layers, followed by a block of 23 layers with multiple connec-
tions between each layer. supercombo takes in four input tensors:
input_imgs, desire, traffic_convention, and initial_state,
all of which enter at different points in the network. Only input_imgs
is processed by the convolutions at the beginning of the network.
The input_imgs tensor is a composite of two reordered image ten-
sors collected consecutively by an onboard camera. The network
outputs a single tensor with shape=(1, 6472). The output provides
information on many aspects of the driving environment, including
traffic car locations, path waypoints over upcoming timesteps, and
probabilities associated with certain predictions.

Among state-of-the-art falsifiers, Shriver et al. have developed
the framework DNNF [13] that enables the use of many existing
adversarial example generators to falsify more sophisticated safety
properties. DNNF architecture is shown in Figure 1. The DNNF
frontend consumes a safety property written using property spec-
ification language DNNP and a network. It outputs a simplified
network in an intermediate representation operation graph and a
robustness property that is equivalid to the safety property. These
outputs are then consumed by DNNF, which concretizes inputs that
are not being manipulated, according to the property specification.
Input that can bemanipulated is referred to as symbolic input. DNNF
then performs falsification, converting the operation graph accord-
ing to the deep learning (DL) framework utilized by the falsifier,
and manipulating the symbolic input to falsify the safety property.
In this way, DNNF functions as a framework to allow existing falsi-
fication techniques to run on more sophisticated properties and a
wider variety of networks regardless of DL framework.

Early falsifiers [8, 17] did not leverage the internal structure of
the DNN, instead fuzzing it as a black box. Treating the DNN as a
black box makes them applicable to any DNN independent of inter-
nal complexity, but they are significantly slower at finding deeper
violations because they lack an understanding of the DNN structure.

Benchmark
Networks[13]

Supercombo
Network

Total Operators 74 356
Unique Operators 11 15
Unique Activation Functions 2 4
Inputs 1 4

Input Dimensionality (200,200,1) (1,12,128,256)
(1,8) (1,2) (1,512)

Outputs 1 1
Output Dimensionality (1,10) (1,6472)

Table 1: Complexity and scale of DNNF benchmark models
versus the industrial supercombo network.

Moreover, though these early falsifiers could be extended to sup-
port networks with complex relationships between inputs and/or
outputs, they currently do not, in part because of the conventions
of falsification benchmark networks. Subsequent falsifiers [3, 5, 15]
used adversarial attacks, enabling these techniques to work on any
type of network. However, these falsifiers were limited to only lo-
cal robustness properties, instead of falsifying specific properties
written across inputs and outputs using first-order logic.

Applying DNNF to a network like supercombo is not possible
out-of-the-box due to assumptions about the networks it consumes.
Four benchmarks containing 52 networks in total were used to
benchmark DNNF. Each benchmark contains trained models cate-
gorized by application: ACAS-Xu, CIFAR-EQ, GHPR, and Neurify-
DAVE. Table 1 shows the differences between the largest networks
used to benchmark DNNF and supercombo compared in the ONNX
DL framework [9]. The first row compares the maximum number
of operators1 per benchmark network versus supercombo, with
supercombo containing almost 5 times as many. supercombo con-
tains 4 more unique operators and 2 more unique activation func-
tions than the most varied networks in the DNNF benchmarks.
Significantly, supercombo takes 4 inputs whereas all benchmark
networks take 1, with the largest dimensions of those inputs being
a 1-channel 200 × 200 image. Although all networks produce one
output, the largest output dimensions in the benchmark are only
(1,10) compared to supercombo’s (1, 6472).

The differences in Table 1 highlight the types of networks for
which DNNF was designed. First, multi-input networks are not
supported, despite many network architectures requiring multiple
inputs. For example, recurrent neural networks are multi-input
networks that take in previous output from the network to supple-
ment new input. supercombo is itself a recurrent network. Similarly,
long-short term memory (LSTM) networks are a specific kind of
recurrent network for timeseries data and have appeared in real-
world self-driving vehicle software [12]. The falsification step of
DNNF presents further challenges for multi-input networks. Falsi-
fication relies on manipulating symbolic input in order to falsify
properties. So, multi-input networks may need to restrict which
inputs are used for falsification, while keeping others constant.

Second, DNNF needs to be able to convert all operators in a net-
work into an intermediate representation. If operator types are not
represented internally by DNNF, the network cannot be consumed

1ONNX operators [9] are a weighted function or matrix operation such as Add, Gemm,
or Conv2D, or an activation function. Unlike neurons, operators consider weighted
functions or matrix operations and activation functions separately.



Finding Property Violations through Network Falsification: Challenges, Adaptations and Lessons Learned from OpenPilot ASE ’22, October 10–14, 2022, Rochester, MI, USA

for falsification. More recent large-scale networks involve opera-
tors that are not supported by the reduction process. For example,
supercombo involves the Split operator that is more common in
large networks to direct the flow of information. In total, 20 unique
operators are present across all networks in this set of benchmarks.
However, the size of the individual networks means that some
operators endemic to large-scale networks are not present.

Finally, the scale and complexity of benchmark network outputs
stand in contrast to that of supercombo. The largest benchmark
output dimensionality is (1,10), which comes from ResNet networks’
classification score output. Although these scores are correlated,
they are low-dimensional in that a limited number of correlations
can be inferred between them. In contrast, supercombo output
consists of far more features with high correlation, such as the
predicted path and anticipated acceleration, or locations of lead
vehicles and lane line predictions. Falsifying a property for one
set of outputs may have unintended consequences on many other
outputs. Moreover, many of these individual pieces of informa-
tion have dimensionality in the x-y-z plane and over time, further
complicating the relationships between predicted features. The in-
terconnected and high-dimensional nature of supercombo output
requires complex properties with low overhead to falsify.

3 ADAPTING DNNF FOR SUPERCOMBO
Given these challenges, we explore extending DNNF to make falsifi-
cation of supercombo viable in order to produce valuable counterex-
amples of safety properties. We enacted the following workflow to
extend DNNF and determine relevant properties for supercombo:
(1) Extending the DNNF frontend to handle new operators in DL
frameworks PyTorch and Tensorflow to support parsing of the in-
put network; and (2) Extending DNNF to support multiple inputs
and the specification of a subset of them as constants.

Figure 1 displays the extended portions of DNNF and DNNF
frontend in diagonal yellow stripes. The DNNF frontend takes in a
network and parses it recursively to create an intermediate repre-
sentation. This requires all operators in the network to be analyzed,
determining the shape of the input and output for each operator,
and tracing them throughout the analysis. This is performed in the
network parser by a visitor pattern visiting each operator and con-
verting it into a DL framework-agnostic representation to form the
operation graph as an intermediate representation of the network.

For supercombo, only one operator needed to be added to the
DNNF frontend, alongside extensions to existing operators. The
Split operator splits the input tensor into a set of chunks of param-
eterized size along a parameterized dimension. The output of this
operator is those “chunks” of the original tensor. It is a means to
reroute the flow of information in a network. With the introduction
of Split and the accompanying re-routing of output information
from Split nodes, the OutputSelect operator had to be parameter-
ized to the number of input and output channels and internal logic
extended. The OutputSelect operator is endemic to the DNNF
frontend to assist the operation graph visitor in directing output
from a preceding operator with multiple outputs to subsequent
operators. While the OutputSelect operator was already defined,

it did not have a visitor implemented for any DL framework con-
verter. Besides the implementation, we also added tests to meet the
continuous integration requirements of the DNNF framework.

Concretization of inputs allows for a property to be falsified
through one symbolic input such as an image, which can be changed
by the falsifier, while using other concrete inputs that do not change
for the purpose of testing, such as recurrent state. This functionality
must be added to DNNF for each falsifier. For multi-input networks,
not all inputs may be relevant to falsification. Inputs that are not
used for falsification must be concretized in order to be kept con-
stant. Anytime a back-end falsifier analyzes the network, either to
determine a gradient or to validate a counterexample, it must do
so using a set of inputs. By default, all of those inputs were repre-
sented symbolically, because typical networks were only concerned
with one input. Code was written for the PGD falsifier to separate
symbolic and concrete inputs, determine concrete values, and order
them such that they were fed to the model at the correct points. The
values corresponding to these inputs are defined via the property
file and passed to the model alongside the symbolic input within the
appropriate falsifier, which uses them for gradient attachment to
the symbolic input and generation of candidate counterexamples.

Understanding, developing, and testing these two extensions to
DNNF took approximately 80 hours of engineering time, result-
ing in 8 commits and approximately 300 lines of code, most for
testing the changes. Besides those larger changes, we carried out
multiple smaller changes in DNNF. For example, supercombo’s size
required more memory and a higher parsing recursion limit so the
parser could fit the model into memory. Another instance was the
need for more sophisticated converters between DL frameworks.
For example, ONNX supports named inputs, but since most other
frameworks rely on the ordering of inputs, we had to support re-
ordering of inputs based on anticipated size when converting from
an ONNX framework. Moreover, the default behavior of some ex-
isting operators had to be changed. For example, operator Conv2D
had hardcoded values that assumed less complex operator behavior.
Hardcoded parameter groups=1 affected the behavior of the con-
volutions with respect to the number of input and output channels,
as well as the output shape of this operator.

4 RUNNING DNNF ON SUPERCOMBO
We now explore the effectiveness of our extended version of DNNF
v0.1.3 at finding counterexamples for three safety properties in the
supercombomodel of OpenPilot version with commit hash 54d6d9.

4.1 Inputs, Outputs, and Properties
We define safety properties in terms of the inputs and outputs of
supercombo2. The input of interest input_imgs is a tensor com-
prised of two consecutive 256×512 images, collected in 6-channel
YUV420 format. supercombo output is a tensor of shape=(1, 6472)
containing multiple estimates. Among those, we focus on the loca-
tion of the lane and road edges, the confidence in those estimates,
and the probabilities of lead vehicle positions. Figure 2a exemplifies
a well-formed image from the OpenPilot dataset we describe in

2A full breakdown of OpenPilot models and input/output is available here: https:
//github.com/commaai/openpilot/tree/90af436a121164a51da9fa48d093c29f738adf6a/
selfdrive/modeld/models.

https://github.com/commaai/openpilot/tree/90af436a121164a51da9fa48d093c29f738adf6a/selfdrive/modeld/models
https://github.com/commaai/openpilot/tree/90af436a121164a51da9fa48d093c29f738adf6a/selfdrive/modeld/models
https://github.com/commaai/openpilot/tree/90af436a121164a51da9fa48d093c29f738adf6a/selfdrive/modeld/models


ASE ’22, October 10–14, 2022, Rochester, MI, USA Meriel von Stein and Sebastian G. Elbaum

(a) Image 104 (b) Image 104 + random noise

(c) Output for Image 104 (d) Output for random noise

Figure 2: Original and baseline images from the comma.ai
dataset and the corresponding output from the supercombo
model.

Section 4.2. Three of the outputs of supercombo for this image are
shown in Figure 2c: predicted nearest lane lines, the probability for
the 2 nearest lane lines, and probabilities for lead car positions iden-
tified in the image. Figure 2b shows the same image from Figure 2a
with Gaussian noise applied such that the distance from the origi-
nal image is 𝜖=10, a value derived from example properties in the
DNNF benchmark. supercombo output for this image (Figure 2d)
shows minimal deviation from Figure 2c. A 10-image subset of the
dataset with 𝜖=10 Gaussian noise applied showed similar results.
This suggests random noise is not sufficient to foul supercombo,
and that more sophisticated approaches like falsification are needed
to cause significant deviations in output.

Given these features of the input and output of the network, we
design three properties that can be defined informally as 3:
Safety Property 1: lane line confidence. – “Given an original
image 𝑥 and the lane confidence prediction of that image 𝑦, there
is no image 𝑥 ′ within 𝜖=10 from 𝑥 that renders supercombo lane
confidence prediction𝑦′ such that𝑦’ is more than a 10%margin from
𝑦.” A violation in this property could cause OpenPilot to confuse
lane lines or disengage following a decrease in confidence.
Safety Property 2: location of nearest lane lines. – “Given an
original image 𝑥 and the lane prediction of that image 𝑦, there is
no image 𝑥 ′ within 𝜖=10 for which the last y-value of the near left
and near right lane lines in 𝑦 is farther than a quarter of a standard
lane width from the output of 𝑥 ′.” This property determines the
overall shape of the lane occupied by the vehicle in the upcoming
timesteps. A violation could cause a lane departure.
Safety Property 3: confidence of locations of lead car(s). –
“Given an original image 𝑥 and the lead car confidence prediction of
that image being 𝑦, there is no image 𝑥 ′ within 𝜖=10 for which the
lead car location confidence in 𝑦 is farther than a 10% margin from

3The formal properties represented in DNNP, and the code to run them, can be found
in the paper repository: https://github.com/MissMeriel/openpilot-falsification.

(a) Image 199 (b) Property 2 CE

(c) Output for Property 2 CE show-
ing lane line predictions for upcoming
timesteps.

Figure 3: Original dataset image 199 and CE within 𝜖=10 and
the corresponding output from the supercombomodel.

the corresponding lead car location confidence in the output of 𝑥 ′.”
A violation of this property could cause a collision, a correlated
shift in lead car locations, or a disengagement of OpenPilot.

4.2 Finding Counterexamples
Given the specified properties, we run DNNF v0.1.3 on supercombo
network using input images from the OpenPilot public dataset [10].
The dataset consists of over 7 hours of driving data and 522,434
images, predominantly on highways.

Figure 3 shows the results of falsification for 𝜖=10 over Property
2. These images look relatively similar, in that all of the features
of the original image are still discernible to the human eye4. Addi-
tionally, the counterexample (CE) produced for Property 2, shown
in Figure 3b, seems “grainy” but is still human-interpretable.

Property 2 CE output in Figure 3c shows the rightward shift in
the last index of the near right lane line pushes it 1.118 meters to
the right. This large delta in CE output exceeds the quarter of a
lane width specified in the property (0.925 meters) by 0.193 meters.
The CE has also pushed the near left lane line slightly closer to the
center by a much smaller amount (0.302 meters to the right). The
shift in near left and right lanelines creates the appearance of a
slight right curve in the road not visible in the original image.

Table 2 shows the performance of falsification for the three prop-
erties on a subset of 10 images with well-formed output, averaged
over 10 runs for each image. Each runwas given 100 random restarts
of 100 steps each to find a CE and quits once a CE is found. Column 1
shows nonzero falsification rates for all 3 properties, indicating how
many of the 100 runs per property resulted in CEs. The low falsifi-
cation rate for Property 1, coupled with frequent restarts, suggests
that Property 1 is the most difficult to falsify. In column 2, average

4Note that, because consecutive images are near-identical, we only show the first image
from the two-image composite tensor input to the network. Due to space constraints,
we only demonstrate property falsification on image 199 in this paper. Further results
can be found in the paper repository.

https://github.com/MissMeriel/openpilot-falsification


Finding Property Violations through Network Falsification: Challenges, Adaptations and Lessons Learned from OpenPilot ASE ’22, October 10–14, 2022, Rochester, MI, USA

Falsification
Rate

Avg. Total
Time (s)

Avg.
Restarts

Images
with CEs

Property 1 17% 222.6 88.2 4
Property 2 47% 123.6 60.3 6
Property 3 58% 197.4 46.5 6

Table 2: Average falsification performance for ten dataset
images within 𝜖=10

total time is the time to reduce the network, simplify the property,
and find a CE using falsifier PGD. Average falsification time for each
property, respectively 142.8s, 44.6s, and 46.5s, compared to total
time shows that network reduction and property simplification are
by far the most expensive aspects of falsification. The high frontend
time cost suggests avenues for future work in optimization, espe-
cially for larger networks and more complex properties. In column
3, average restarts reflect the amount of searching of the input space
within 𝜖=10 was needed to find a CE, suggesting the properties are
ordered in descending difficulty. The confidence of nearest laneline
locations appears the most difficult to manipulate, and confidence
of lead car positions the easiest. This is supported by falsification
rate. Lastly, column 4 shows how many of the 10 images for which
a CE was found. Only Image 104 (Figure 2a) produced CEs for all
three properties, while 5 images produced CEs for two of the three
properties. Nine of the 10 images showed a CE for at least one
property. The lower time to run falsification on Property 2 than
Property 3, despite the higher number of restarts, can be attributed
to the higher number of bounds on output values for Property 3 as
Property 3 bounds three values instead of two. Similarly, Property 1
bounds only two output values, and has a comparable average total
time to run despite almost double as many restarts as Property 3.

5 LESSONS LEARNED
This study provides several insights into running falsifiers on “real-
world” networks. With an engineering cost of tens of hours, we
were able to perform falsification on a complex, real-world network
and find interesting counterexamples for 3 properties that leverage
aspects of the system enclosing the network. Falsification results
show counterexamples exist within the estimated input space.

As suggested by Table 1, complex networks have unique architec-
tural considerations, and falsifiers need additional functionality to
support them. Adding new operators is low-cost, though operators
that complicate the internal data flow of the network may require
careful refactoring and testing. For example, the Split operator is
present in the OpenPilot dmonitoringmodel and is also part of the
BigGAN architecture. This suggests that there may be classes of op-
erators that are only used on large-scale networks. Other operators,
such as Slice and LSTM, appear in large and/or complex networks
such as AdmiralNet and need support or extended functionality in
the DNNF framework. Slice supports weights passed as functions,
requiring special parsing on the part of the DNNF frontend.

This project has inspired several recommendations for future
work. Further investigation of large- versus small-scale network
considerations might facilitate the development and deployment
of falsification tools. Managing network inputs during falsification
is a larger effort, as it affects property construction and the func-
tionality of each falsifier differently. Additionally, more complex

networks could benefit from the extension of DNNF to more falsi-
fiers. For supporting most network architectures, we expect that the
dominant issue is engineering cost rather than technical barriers.

There are pending challenges regarding input space complexity.
Our current solution for input concretization supports properties
with one symbolic and multiple concrete inputs, but not multiple
symbolic inputs, and may not generalize to multiple concrete inputs
of identical size. Inputs with dependencies, like an image and a
recurrent state, would need careful property construction and likely
require both inputs to be symbolic, which DNNF does not currently
support. Furthermore, concrete inputs have the potential to better
simplify networks and reduce properties, andmay ultimately reduce
overhead. Constant propagation and partial input execution for
multi-input networks also promise improvement of DNNF.

ACKNOWLEDGMENTS
We are thankful to David Shriver, author of the DNNF toolchain.
This work was supported in part by NSF Award #1924777 and
AFOSR Award #FA9550-21-1-0164.

REFERENCES
[1] Arvind Adimoolam, Thao Dang, Alexandre Donzé, James Kapinski, and Xiaoqing

Jin. 2017. Classification and coverage-based falsification for embedded control
systems. In International Conference on Computer Aided Verification. Springer,
483–503.

[2] Cas JF Cremers. 2008. The Scyther Tool: Verification, falsification, and analysis
of security protocols. In International conference on computer aided verification.
Springer, 414–418.

[3] Tommaso Dreossi, Alexandre Donzé, and Sanjit A Seshia. 2019. Compositional fal-
sification of cyber-physical systems with machine learning components. Journal
of Automated Reasoning 63, 4 (2019), 1031–1053.

[4] Daniel J Fremont, Johnathan Chiu, Dragos D Margineantu, Denis Osipychev, and
Sanjit A Seshia. 2020. Formal analysis and redesign of a neural network-based
aircraft taxiing system with VerifAI. In International Conference on Computer
Aided Verification. Springer, 122–134.

[5] Xingwu Guo, Wenjie Wan, Zhaodi Zhang, Min Zhang, Fu Song, and Xuejun Wen.
2021. Eager Falsification for Accelerating Robustness Verification of Deep Neural
Networks. In 2021 IEEE 32nd International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 345–356.

[6] Greg Hogan. [2021]. Scaling for 10X User Growth. comma.ai blog (2021). https:
//blog.comma.ai/scaling-for-10x-user-growth/

[7] Chris Isidore and Peter Valdes-Dapena. 2021. Tesla is under in-
vestigation because its cars keep hitting emergency vehicles. CNN
(2021). https://www.cnn.com/2021/08/16/business/tesla-autopilot-federal-safety-
probe/index.html.

[8] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.
Tensorfuzz: Debugging neural networks with coverage-guided fuzzing. In Inter-
national Conference on Machine Learning. PMLR, 4901–4911.

[9] ONNX. 2019. ONNX: Open Neural Network Exchange. https://onnx.ai/.
[10] OpenPilot. 2022. comma.ai driving dataset. http://github.com/commaai/research.
[11] OpenPilot. 2022. OpenPilot open source driver assistance system, SHA256 tag

54d6d9. https://github.com/commaai/openpilot. OpenPilot (2022).
[12] Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. 2020. A First Look at the

Integration of Machine Learning Models in Complex Autonomous Driving Systems:
A Case Study on Apollo. Association for Computing Machinery, New York, NY,
USA, 1240–1250. https://doi.org/10.1145/3368089.3417063

[13] David Shriver, Sebastian Elbaum, and Matthew B. Dwyer. 2021. Reducing DNN
Properties to Enable Falsification with Adversarial Attacks. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 275–287. https:
//doi.org/10.1109/ICSE43902.2021.00036

[14] The Autoware Foundation. 2021. Autoware. https://www.autoware.org/.
[15] Xiao Wang, Saasha Nair, and Matthias Althoff. 2020. Falsification-based robust

adversarial reinforcement learning. In 2020 19th IEEE International Conference on
Machine Learning and Applications (ICMLA). IEEE, 205–212.

[16] Waymo. 2021. Waymo Driver. https://waymo.com/waymo-driver/.
[17] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun

Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: A Coverage-Guided
Fuzz Testing Framework for Deep Neural Networks. Association for Computing Ma-
chinery, New York, NY, USA, 146–157. https://doi.org/10.1145/3293882.3330579

https://blog.comma.ai/scaling-for-10x-user-growth/
https://blog.comma.ai/scaling-for-10x-user-growth/
https://doi.org/10.1145/3368089.3417063
https://doi.org/10.1109/ICSE43902.2021.00036
https://doi.org/10.1109/ICSE43902.2021.00036
https://doi.org/10.1145/3293882.3330579

	Abstract
	1 Introduction
	2 Observations and Challenges in Falsifying supercombo
	3 Adapting DNNF for supercombo
	4 Running DNNF on supercombo
	4.1 Inputs, Outputs, and Properties
	4.2 Finding Counterexamples

	5 Lessons Learned
	Acknowledgments
	References

