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ABSTRACT
Adversarial testing tends to focus on DNNs in isolation, to the ex-
clusion of the full system state and system behaviors resulting from
sequences of DNN output. In this work we propose a more holistic
approach to DNN testing that accounts for the effects of perturba-
tions on the system state. Our insight is that, when an adversarial
perturbation is situated in the environment and encountered by
the system, the way it is sensed and processed by the system de-
pends on system state. Our approach involves three key elements:
1) integration of simulator into the testing process to update state,
2) optimization of perturbation over time, and 3) fitting pertur-
bations to sequences of inputs consistent over spatio-temporally
ordered states. These ideas lay a foundation for the testing of sys-
tems with DNNs that rely on spatio-temporally related inputs. We
illustrate the potential of our idea through adversarial perturbation
of the physical environment of an autonomous vehicle. We define
a broader research agenda around this more holistic DNN testing
approach that accounts for system state.

ACM Reference Format:
Anonymous Author(s). 2022. Beyond DNN Silo-Testing: Integrating Au-
tonomous System State. In Proceedings of The 44th International Conference
on Software Engineering (ICSE 2022). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Autonomous systems are becoming ubiquitous. We live with cars,
drones, vacuum cleaners, and warehouse robots, operating with
higher and higher levels of autonomy. In spite of their ubiquity,
autonomous systems’ potential is often hampered by a susceptibility
to misbehavior. For example, Tesla self-driving cars have shown a
propensity to crash into emergency vehicles when their lights are
flashing [14] or to interpret the full moon as a yellow traffic light
and slow down without warning [15]. Such events highlight the
importance of thoroughly testing these systems. More specifically,
since the software supporting such autonomy increasingly relies
on deep neural networks (DNNs) to encode behavior that would be
very difficult to develop through traditional programming, testing of
DNNs is now critical. This is reflected in the effort our community
has allocated to such work [1, 3, 6–9, 11, 12, 16, 17, 20, 21, 23–
28, 30, 32, 33].

Today, most testing efforts for the DNNs driving these systems
operate in a silo, targeting the DNN in isolation without consider-
ing dependencies with the full system state. Such approaches are
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Figure 1: Vehicle driving by a roadside billboard.

effective at determining the robustness of the network to typical or
adversarial contexts [13]. For a DNN generating a steering angle
for self-driving vehicle, silo-testing might help to judge the DNN’s
ability to correctly predict steering angle on images of an unfamiliar
road or on images with environmental noise for which it was not
explicitly trained. However, it will miss cases in which the evolving
state of the system has an unexpected effect on the input of the
DNN, leading to sometimes-catastrophic system misbehavior. For
example, a vehicle under test may accelerate around a curve at
rapidly increasing velocity. Environmental blurring of the input
images has been tested and accounted for to not disrupt steering
predictions. However, the acceleration causing the blur makes the
vehicle incapable of turning sharply without losing control past
some velocity threshold.

In this work we hypothesize and later show that the complex
spatial-temporal dependencies of these autonomous systems to
their execution environment make existing testing techniques in-
sufficient. Hence, instead of DNN silo-testing, we advocate for
testing of DNNs to take into account the system state. This means
that the system state must reflect the changes caused by the test ex-
ecution (i.e., if the DNN generates a steer angle the car must adjust
its steering), and it also means that the the next input to the DNN
will depend on the updated system state (i.e., the steered car now
senses a different image than it would without the steering). The
core idea is to include, as part of the testing process, how the DNN
output affects the system state and how the system state affects the
next round of inputs to the DNN.

Next, we provide a motivating example to illustrate how account-
ing for system state can dramatically affect testing results. Then,
we sketch an approach to show what it would take to incorporate
system state into the test generation process. Last, we briefly ex-
plore the potential of the proposed approach and find that it can
detect more than three times the failures than a state-of-the-art
technique, and present a broader research agenda.

2 MOTIVATION
Consider a self-driving car on a road with turns, lane markers,
vegetation, and billboards like that in Figure 1. A camera mounted
on the vehicle collects images at 30 fps. A DNN then consumes
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each of those images to produce a sequence of inputs to steer the
car [5]. However, such DNNs are prone to adversarial inputs that
may cause misbehaviors [2].

One way to attempt to detect misbehaviors like this is through
adversarial testing. The state of the art in adversarial image genera-
tion takes individual images from a data set, applies some changes
that should not affect the DNN output or affect it in known ways,
and compares the DNN output for the original and the perturbed
image [10]. For example, DeepXplore [18] generates adversarial
perturbations using gradient ascent that vary a minimal number of
pixels. DeepRoad [31] applies changes that mimic certain weather
conditions. DeepHunter [29] aims to make changes that preserve
the key features, like changing the image on a billboard would
preserve the road in the driving environment.

Such techniques, however, have a fundamental limitation: the
tests do not account for how the system functions and the space of
possible changes to system state as a result of the DNN input. For
example, a real-life malfunction might result in one dead pixel in the
image, but that dead pixel will be in a fixed location for the entirety
of the car’s test run. Thus, adversarial tests that render different
adversarial pixels on per-image bases for different images are not
physically realistic for the system. Furthermore, a dead pixel that
causes a large difference on one image may not have a significant
effect on a system as it is corrected by the next captured image or
it is attenuated by a constraint imposed by the system state. This
makes single-image test error measurements less meaningful in
terms of how the perturbation will ultimately affect the system
behavior.

DeepBillboard [33] took a first step in accounting for system
state changes by considering a sequence of images from the vali-
dation set where a car drives past a billboard, similar to Figure 1.
DeepBillboard then performs an optimization to generate an ad-
versarial billboard (the perturbation) that maximizes steering loss
on all of those images. This produces an adversarial perturbation
that can be placed in an environment and be applied to consecutive,
physically consistent images. However, this technique has a major
weakness: it operates on a stale state. That is, the optimization
procedure operates on images collected under normal driving, not
accounting for the effect of perturbed actuation on the system state
in later timesteps.

To enable the capture of system live-state for test generation,
we propose to embed a simulator into the adversarial generation
cycle such that the collection and generation phases are interleaved.
Having a simulator in the loop, with additional functions to keep
the perturbation consistent over time, we are able to enact the
perturbation as we generate it to update the system state, while si-
multaneously gathering input constraints to constrain the effects
of the perturbation to physically possible inputs to the system.

Figure 2 illustrates the implications of using a live-state technique
to generate adversarial billboards using an input image sequence
of length N. The image sequences resulting from the two collection
trajectories are shown at the bottom of the figure. The features of
the images, such as lane markers, vegetation, obstacles, and vanish-
ing point of the road at time 𝑡0 are similar between techniques, but
deviate significantly in later timesteps 𝑡𝑖 and 𝑡𝑁 reflecting the dif-
ferent system states (different poses which leads to different images
being captured). The state-stale technique generates a billboard

Figure 2: Input images for a stale-state perturbation versus
a live-state perturbation and resulting trajectories. Account-
ing for live-state leads to a crash.

using the input sequence from following a normal trajectory in the
collection phase (blue solid line), which causes the test run (blue
dotted line) to barely drift from the normal trajectory, as the pertur-
bation stops working on images collected under the new state. The
car ultimately returns to a normal trajectory. When incorporating
system live-state, state is updated such that the effects of the per-
turbation are reflected in the system state as seen in the live-state
sequence of images outlined in red at the bottom of Figure 2. As a
result, the test trajectory (red dotted line) closely mimics the collec-
tion trajectory as the vehicle state is kept up-to-date and does not
drift out of phase from the collection trajectory.

3 APPROACH
Our goal is to generate perturbations situated in the environment
that account for system live-state over space and time in order to
cause undesirable behaviors.

Figure 3 provides an overview of the approach applied to the
motivating example. The critical components are the Generator
of Perturbation over a State Sequence (GPSS) and the simulator.
First, the simulator captures the system live-state, including the
image sensed by the system and the most recent steering input in
the case of the motivating example. Second, this state is added to
the sequence of images and input constraints. Third, GPSS uses
the updated sequence, DNN, and a goal state, such as “hard left
turn”, to update the perturbation and pursue that goal state in the
next timestep. Fourth, the generated perturbation is injected into
the simulator. The process is then repeated, with the simulation
stepping forward a timestep using as input 𝜃 ′𝑡 to produce an updated
𝜃𝑡 informed by the limitations of the system in its current (live)
state. The process is repeated until some stopping criteria is reached
– in this case, that the billboard is out of view or a crash occurs –
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Figure 3: Overview of approach

and a perturbation (final billboard), incorporating constraints from
the entire sequence, is obtained and ready for testing.

3.1 Simulator
The simulator is integral to the success of the proposed approach.
We assume it has enough knowledge of the system state and the
test environment to render relevant state changes. The simulator
updates the system at each timestep to maintain a system live-state,
consistent with the sensed input from the environment, the DNN
commands, and the previous system state.

Note that, given a DNN command, the simulator ensures that a
system input influenced by the perturbation is bounded by
the system states reachable from the current live state. This
is advantageous over existing testing approaches that consider the
DNN in isolation because the DNN outputs may be curtailed by the
system capabilities (e.g., a steering angle can only change so much
in a time frame). More formally, at any timestep 𝑡 in the sequence:

𝜃𝑡 = 𝑠𝑦𝑠𝑡𝑒𝑚.𝑠𝑡𝑎𝑡𝑒.𝑏𝑜𝑢𝑛𝑑 (𝜃 ′𝑡 ) (where 𝜃 ′𝑡 = 𝐷𝑁𝑁 (𝑖𝑚𝑔𝑡 + 𝑝𝑒𝑟𝑡𝑡 ))
(1)

3.2 GPSS
Generating a perturbation over input sequences must account for
two properties. First, the perturbation must maximize state
change toward the goal state. Given an image img, a perturbation
pert, a DNN that governs the behavior of the system, an input x and
the output of the DNN given that input DNN(x), and a loss function
L of the difference in DNN commands engendered by img+pert:

𝑎𝑟𝑔𝑚𝑎𝑥
𝑝𝑒𝑟𝑡𝑡→𝑔𝑜𝑎𝑙

(L(𝐷𝑁𝑁 (𝑖𝑚𝑔𝑡 )), (𝐷𝑁𝑁 (𝑖𝑚𝑔𝑡 + 𝑝𝑒𝑟𝑡𝑡 ))) (2)

Second, the resulting perturbationmust be consistent over
time and space. As the current state of the system depends on the
successful early application of perturbation, the perturbation update
must maintain the validity of those previous states. Moreover, we do
not want to sacrifice the effect of perturbation achieved in previous
steps for the sake of maximizing the current perturbation. The input
constraint sequence provides a record of how to direct loss when
optimizing the current perturbation. Given the final perturbation

(the final version of the billboard) 𝑝𝑒𝑟𝑡𝑁 , the next equation enforces
that the input constraint sequence is maintained such that the
resulting input sequence to the DNN stays consistent across all live
states of the sequence:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑝𝑒𝑟𝑡𝑁

(
∑
𝑡

L(𝐷𝑁𝑁 (𝑖𝑚𝑔𝑡 + 𝑝𝑒𝑟𝑡𝑁 ), 𝐷𝑁𝑁 (𝑖𝑚𝑔𝑡 + 𝑝𝑒𝑟𝑡𝑡 ))) (3)

These properties are enforced jointly at every step of the pertur-
bation generation in relation to previous and subsequent system
and environment states through minimization of the loss function.

3.3 Implementation for Autonomous Vehicle
For instantiating our approach for an autonomous vehicle, we use
a DNN-steered vehicle operating in BeamNG [4], a high-fidelity
soft-body physics simulator for realistic driving and vehicle damage.
This simulator provides access to the car state, including its steering
angle and sensed images. The simulator also enables enacting a
perturbation in the environment at each timestep.We can command
the simulator to spawn the vehicle on a trajectory near the source
of perturbation in a variety of roads and scenarios. The DNN we
use takes in an image collected from the simulator to determine the
steering input to the car. Those images encode the system state of
the car (e.g., how close it is to the edge of the road, whether it is
currently navigating a turn).

We used a billboard to act as the source of perturbation, 𝑝𝑒𝑟𝑡 .
Here, the delta between next reachable states in Equation 2 is de-
fined in terms of difference in steering angle after perturbation has
been applied towards the steering angle goal state. To maximize
the state delta as defined in Equation 2 and make an analogous
comparison to DeepBillboard, we chose to run the car off the road.
This consisted of maximizing steering to the left or right as much
as possible at every step. We chose to turn towards the source of
perturbation (i.e., the billboard) to allow for the perturbation to
stay in sight of the onboard camera longer and give the perturba-
tion a longer window to run the car off the road. Once the vehicle
is spawned, the approach collects an image and a steering angle
from the simulator to be added to the sequence of inputs, and per-
forms joint loss optimization to enforce a constraint sequence on
DNN output satisfying Equations 2 and 3. An input constraint 𝜃𝑡
constrains the steering input of the vehicle according to possible
range of actuation at a given system state according to Equation
3. Then, temporary billboard 𝑝𝑒𝑟𝑡𝑡 is injected into the simulated
environment, and the simulator is stepped forward by one timestep,
updating the state of the vehicle. As the car nears the billboard, it
increases in size in the image, and as the orientation of the onboard
camera changes in relation to the billboard, the billboard warps
to accommodate the change in perspective to satisfy Equation 3.
This process is repeated until the onboard camera loses sight of
the billboard and our technique produces a billboard with the full
sequence as the end product of our approach. To test our approach,
we then inject that billboard into the driving environment, and
execute test runs with the vehicle starting from the same starting
point to compute the crash rate caused by the perturbed billboard.

4 EXPLORING THE APPROACH POTENTIAL
We now begin to explore the potential of the approach to cause
system failures in the limited context illustrated in Section 2. More

3
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(a) DeepBillboard.

(b) Proposed Approach.

Figure 4: Effect of billboard perturbation for Deepbillboard
and our approach. Road is defined by orange lines, the bill-
boards are in red, the thick blue line is the normal trajectory,
and the green thick line is the collection trajectory.

specifically, the testing subject is an autonomous Jeep-like vehicle
operating in the BeamNG simulator [4]. It utilizes a DAVE2 network
[5, 22] converted to pytorch [19] that consumes camera images to
steer the vehicle around a racetrack. As trained, without external
influences, the system is able to navigate close to the centerline of
a given target race-track indefinitely.

The adversarial testing process aims to expose configurations
for a billboard next to the road that would cause a vehicle crash.
A reason for exploring this particular context is that it is one of
the few that has a state-of-the-art technique for it in Deepbillboard
[33]. Deepbillboard and the proposed approach depend on many
parameters such as the billboard size and location, the features of
the portion of road, the camera resolution and rate, and the different
adaptations of the loss function. The proposed approach has even
more parameters such as weighting of the sequence. At this stage
we have only sampled that space of variables, but among the tens of
cases we explored we found that the proposed approach causes
crashes in over 70% of the runs while Deepbillboard is only
able to cause crashes in 20% of the runs.

Figure 4 depicts a typical set of results from DeepBillboard and
the proposed approach using the same parameters. The orange
lines depict the road, with the axes showing the dimensions of
the driving environment in meters. Both approaches to generate
the billboard perturbation were designed to pull the car towards a
billboard situated on the left-hand side of the road. We executed a
set of 10 tests utilizing the billboard from each approach to account
for random variation introduced by the simulator. DeepBillboard,
Figure 4a, shows a high variance of tests paths, with two of them
ending in a crash and the remaining eight returning to the normal
trajectory. This confirms our intuition about the impact of not
accounting for system state. As the perturbation takes effect and
the collection sequence and test sequence diverge, the perturbation
becomes less effective and the car returns to the expected trajectory.

Our approach, Figure 4b, has lower variance and greater preci-
sion. Seven of the ten test runs ended in a crash into a structure
along the left-hand side of the road. These seven runs closely fol-
low the collection trajectory, shown in green. The remaining three
test runs return to the normal trajectory. We speculate this is due
to noise from the simulator causing the car to miss those early
perturbation steps, which in turn causes the image sequence to
deviate further and further from the collection sequence and the
perturbation to cease to affect the image sequence under test.

5 BROADER RESEARCH AGENDA
This work points to the need for a broader research agenda on
testing DNNs that is more holistic in considering the system state.
In particular, we believe three directions require more attention.

Technical challenges. The prototyped loss functions are rather
primitive. They do not account, for example, for the different influ-
ences of state across a sequence (i.e., earlier images should affect
the perturbation more than later ones) or for the transfer potential
of the pertubation to other contexts (i.e., the same billboard on a
different road). They also ignore the cost of the proposed approach.
Iteratively capturing the system state and applying gradient ascent
at every step slows down test generation by an order of magnitude.
Techniques are needed to make the approach more efficient.

Characterizing a Complex Space of Factors. There are many
and often confounding factors that may affect the success of our ap-
proach. These factors include DNN architecture (i.e., certain layers
being more amenable to analysis), system attributes and constraints
(i.e., the steering angle depends on the system steer state), scenario
attributes (i.e., system initial velocity, straight versus curved road),
and perturbation space (i.e., billboard size and placement). This will
require extensive empirical studies to draw principles that guide
how to best configure the approach parameters to cause crashes.

Beyond Perturbing Billboards to Crash Cars. In the context
of autonomous vehicles, there are countless opportunities to inject
adversarial perturbations (e.g., license plates, road decals, graffiti).
However, the approach is not limited to this type of systems. A
drone localizing a target or a robot arm analyzing the orientation of
an object both rely on the interpretation of images to accomplish a
task. These emerging systems with rich states would be appealing
targets for the proposed approach. Furthermore, perturbations do
not have to be adversarial; they can be designed to cooperate with
the system to, for example, navigate a hairpin curve.
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