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1 Introduction

Music identification software has grown in popularity since the turn of the century, most notably
with the release of Shazam [1] and SoundHound [2]. This technology is still incredibly relevant today,
as Shazam was acquired by Apple in 2018 [3]. The general concept behind music identification is fairly
straightforward: a user queries a huge database of encoded songs with a sample, and an algorithm
finds and reports the closest match from the database. These popular software companies, however,
provide fairly limited information regarding which algorithms are used. The main insight into early
music identification algorithms comes from a 2003 paper published by one of Shazam’s founders, Avery
Li-Chun Wang [4]. This paper outlines high-level details about their algorithm at the time.

The primary insight from this paper is that the original version of Shazam used a technique called
audio fingerprinting. The idea behind audio fingerprinting is that directly matching raw audio signals for
music identification is intractable, since background noises are inevitable. Instead, raw audio signals are
converted into a connected map of frequencies through time, and comparisons are made between these
maps. This is much more resilient to background noise, since many of the component frequencies will
not be as affected by noise [5].

2 Problem and Motivation

One problem is that there are many ways to to fingerprint audio signals, and the methods that give the
best accuracy or are the most robust to noise remain unclear. Another problem is that the fine details
regarding the algorithms behind Shazam or SoundHound are unknown, as their code is unavailable and
their described techniques are either private or incomplete. Therefore, this report has two primary goals.
First, it is necessary to recreate Shazam’s pipeline based on how it was described in the 2003 paper.
Second, this pipeline will be used to evaluate various fingerprinting parameterizations over noisy data to
determine how each parameter affects accuracy, along with the tradeoff between complexity and noise
resiliency for each parameter.

3 Approach

My implementation of Shazam’s music identification pipeline consists of four main components: Fre-
quency Analysis, Keypoint Extraction, Fingerprinting, and Fingerprint Matching.

1



3.1 Frequency Analysis

The first step is to perform frequency analysis over a signal. To this end, I implemented the Short-Time
Fourier Transform (STFT) algorithm, which accepts a raw signal as input and produces a spectrogram
that contains the signal’s component frequencies over time. Each time I ran a signal through the STFT
algorithm, I used a Hanning window of length 756 and a hop length of 378.

3.2 Keypoint Extraction

After a spectrogram has been extracted from an input signal, the next step in the pipline is to detect
keypoints (see Figure 1a). This is accomplished through several image processing techniques. First, to
establish the spacing between keypoints, a given spectrogram image is partitioned into regions (or “bins”)
of some size n×n. This bin size is a parameter that is provided by the user. Within each bin, the highest
intensity pixel is preserved and all other pixels are set to zero. After this process, there is exactly one
delegated key point per bin. To determine which keypoints are most valuable, the low-intensity key points
are pruned away if they do not reach a given intensity threshold, α. This threshold is another parameter
that is provided by the user. When complete, this step reports a set of key points that are spaced and
thresholded according to the given parameters.

3.3 Fingerprinting

The next step in the pipeline is to convert the set of keypoints into a unique fingerprint (see Figure
1b). This is accomplished through a variation of the k-Nearest Neighbors algorithm. For each keypoint
(the “anchor point”), the k neighboring keypoints that are nearest to it (by Euclidean distance) and
occur after the anchor point in the time domain are clustered together (and hereby referred to as a “local
fingerprint”). This variation is used to prevent a sample from having fingerprints that have been cut off
at its start, which would lead to a greater quantity of mismatches. The k parameter is provided by the
user, and directly defines how many keypoints to include within each local fingerprint. This process is
then repeated for all keypoints until the full fingerprint is complete.

Figure 1: Keypoint Extraction (a) and Fingerprinting (b).
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3.4 Fingerprint Matching

Once fingerprints have been extracted from each desired signal, the next necessary step is to match
one fingerprint to another. For efficiency, each fingerprint is encoded as a set of hashed local fingerprints.
Each local fingerprint is stored in a hashtable as follows:

hω = hash(fω, {(f1,∆t1), (f2,∆t2), ..., (fk,∆tk)}) : tω,

where fω, tω are the frequency and time values of the anchor point, respectively, fj , tj are those of
some neighbor j, and ∆tj = (tj − tω) is the time offset between the anchor point and a neighbor. The
value associated with the hash key is the anchor point’s position in the time domain, tω.

For the matching procedure, assume that we are given a query fingerprint q = {h0, h1, ..., hM} and
a database fingerprint dk = {h′

0, h
′
1, ..., h

′
N}. To determine the degree to which q matches with dk, this

algorithm first counts the number of local fingerprint hash keys that are shared between them, i.e.:

count(q, dk) = |q ∩ dk|

For each matched local fingerprint, to ensure that they are time-aligned, it is necessary to find the
relative offset between that of the database and that of the query, i.e. (t′ω − tω). Once complete, the
matching score between the fingerprints q and dk is given by the highest number of matches with the
same time-alignment. This matching procedure is repeated for all fingerprints in the database, and the
song with the highest number of time-aligned matches is the algorithm’s final prediction.

4 Study

In this section, a study is provided that is rooted in the fact that fingerprint complexity is determined
by the quantity and size of its local fingerprints. By adjusting the parameters discussed earlier, audio
fingerprints can be of various levels of complexity. Therefore, through this study, I seek to answer the
following research questions:

• RQ1: How does each fingerprinting parameter affect overall accuracy?

• RQ2: Are high complexity fingerprints less robust against noise?

Through the exploration of these research questions, we will achieve a greater understanding of how
fingerprinting algorithms should be parameterized.

4.1 Experiment Setup

For my experiment database, I used the MagnaTagATune Dataset [6], which contains over 25 thousand
songs (30 seconds each) of diverse genres and instrumentation. I then randomly selected and extracted
audio from 4k of the songs as 5 second clips. Afterward, I created 8 different test sets, each with varying
levels of random Gaussian noise added to each audio file (σ = [0, 0.01, 0.1, 1, 10, 100, 100, 10000]). Over
each parameterization discussed in the following sections, I fingerprinted the entire database and evaluated
each setting with all 8 test sets, to report the accuracy across each noise level.
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4.2 RQ1

For this experiment, I seek to determine how each fingerprinting parameter affects overall accuracy.

4.2.1 k Parameter

First, I vary the size of each local fingerprint (i.e. number of keypoints) while maintaining all other
parameters as constants (bin size = 20, α = 30). Fingerprint size is determined by the value of k
from the k-Nearest Neighbors algorithm in the Fingerprinting step, where k = i means that each local
fingerprint contains i+1 keypoints. To this end, four parameterizations are evaluated, covering the values
k = [1, 2, 3, 4]. Note that a large value for k will result in higher fingerprint complexity, since each local
fingerprint will include many keypoints. Figure 2a shows a plot of the accuracy over progressively noisier
test sets. It is shown that larger local fingerprints actually leads to substantially lower accuracy, even in
the case with zero noise. Therefore, these results suggest that local fingerprints should simply be pairs
of keypoints for the highest accuracy. We can also observe that all parameterizations are fairly robust
against low levels of noise, as they do not face a significant decline in accuracy until σ = 100.

4.2.2 bin size Parameter

Next, I vary the size of each bin, a parameter that is used in the Keypoint Extraction step, while main-
taining all other parameters as constants (α = 30, k = 2). As discussed earlier, the bin size parameter
determines the spacing of keypoints throughout a given spectrogram. I then construct four parameteri-
zations to vary this parameter, covering the values bin size = [10, 20, 40, 60]. Note that a small bin size
will result in higher fingerprint complexity, since keypoints will be very densely extracted. As shown
in Figure 2b, accuracy decreases as the bin size is increased, across all noise levels. This suggests that
keypoints should be fairly dense across a spectrogram because, when spaced too far apart, the resulting
fingerprints are not sufficiently representative of the spectrogram.

4.2.3 α Parameter

Finally, I vary the intensity threshold α, a parameter from the Keypoint Extraction step that determines
the required intensity of each keypoint. I vary this parameter over the values α = [120, 90, 30, 10], with
the other parameters as constants (bin size = 20, k = 2). Note that a low value for α will result in higher
fingerprint complexity, since fewer keypoints will be pruned. As shown in Figure 2c, pruning too many
keypoints greatly reduces accuracy. Otherwise, accuracy is fairly similar between parameterizations. This
suggests that the most representative keypoints hold the highest intensities.

4.3 RQ2

In the second part of my study, considerations from the previous section are used to combine parameters
into low and high complexity fingerprinting parameterizations. To this end, the following parameteriza-
tions are used:

• Low Complexity: (bin size = 60, α = 120, k = 1)

• Mid-Low Complexity: (bin size = 40, α = 90, k = 2)

• Mid-High Complexity: (bin size = 20, α = 30, k = 3)

• High Complexity: (bin size = 10, α = 10, k = 4)

Figure 2d shows the accuracy results for all parameterizations, across each test set. As shown, the
lowest complexity setting was too simple for matching to be effective, and therefore resulted in the poorest
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Figure 2: Accuracy results from varying fingerprint size (a), bin size (b), and intensity threshold (c).
Subfigure (d) shows results from low to high complexity fingerprinting parameterizations.

accuracy. The results also show that the high complexity settings exhibit slightly more sensitivity to noise
levels between σ = 10 and σ = 100, in that they begin to drop in accuracy sooner and more quickly than
the mid-low complexity setting.

4.4 Discussion of Findings

In the first part of this study, it is found that the size of each local fingerprint has the greatest effect
on accuracy. Even so, the spacing and intensity requirement of keypoints also have a fundamental role
in the resulting accuracy. For the greatest accuracy, keypoints should be fairly dense, and only those
with the least intensity should be pruned. When forming local fingerprints, these keypoints should form
low-complexity groupings (ideally pairs). In the second part of the study, I explore selections of these
parameters to create a range of simple to complex settings. These results demonstrate that it is necessary
to find a balance between these parameters, and that the highest complexity fingerprints are slightly less
robust against noise, since noise may slightly alter some low-intensity local fingerprints (therefore leading
to mismatches).
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5 Challenges

In the development of this project, I faced a few key challenges. Aside from a fairly high-level overview
of Shazam’s algorithm from resources found online, there was minimal information regarding the fine
details of the algorithms behind Shazam or SoundHound. For this reason, there were several imple-
mentation details for which I had to make my best guess regarding how Shazam might actually handle
audio fingerprinting. Furthermore, given that I had a database of 25 thousand songs, 8 test sets with 4
thousand clips each, and 13 unique parameterizations, processing and evaluating all of this data (through
fingerprinting, matching, etc.) takes a lot of time. To handle this, I submitted my jobs through Slurm
to get my results in time.

In my proposal, I suggested an extension of this work to compare traditional fingerprinting approaches
to the use of deep generative models for music identification. Inspired by existing work which has used
spectrograms as input to variational autoencoders (VAEs) for the purpose of learning speech represen-
tations [7], I set out to train a VAE to encode spectrogram images into their latent representations. To
identify a (potentially noisy) audio sample, I considered passing it through the encoder and identifying
the closest database sample in the latent space as the final prediction. I began to train several VAE
architectures of various sizes, but was not able to produce results in time. For this reason, a thorough
comparison of noise resiliency between traditional fingerprinting and VAE-based approaches for music
identification will be left for future work.

6 Conclusion

This project presents a replication of Shazam’s early music identification pipeline, based on the concept
of audio fingerprinting. Since there many ways to fingerprint audio signals, the goal of this project
was to use the replicated pipeline to explore the effects of each parameter on test accuracy and noise
resiliency. Through the study provided, it is shown that a balance between these parameters is necessary
to achieve the highest accuracy against all levels of noise. Furthermore, it is shown that extremely
complex parameterizations are more susceptible to noise-induced reduction in accuracy than those that
offer balanced complexity.
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