Qualifying Exam Defense:
Implicit Invariants for Relational Data
Structures

Meriel Stein
May 18, 2020

Invariants IVERSITY

7VIRGINIA

- Truisms that hold over the lifetime of a program
- Help to characterize system implementation at a higher-level

- Applications: check for correctness, find opportunities for optimization, can be
monitored at runtime to check for violations and/or enforce system properties...

0. def someFunction(x):

1. y=2

2. arrayl=[[2 0], [0 O]]

3. array2 = [xY] WHILE LOOP INVARIANTS:

4. while x < 100: x < Ox

5. if(x<=10): x<=100 —-y>2

6. y++ arrayl[0][0] == array2[1]

7. arrayl[0][0] ++ array2[1] ==y

8. X++

9. returny POSTCONDITION INVARIANTS:)

y<=12

Relational Data Structures

- House values that are relational in placement w.r.t. other
adjacent values or the indices in which they are placed

- E.g. Tensors, 1D arrays, 2D arrays, point clouds, sets,
lists...

- More interesting if they are mutable & numerically typed
- More likely to exhibit complex behavior
- More likely to introduce bugs?

B

Motivation IVERSI

7VIRGINIA

- Invariants for relational data
structures have stronger guarantee
of appearing in swarms

- Actions/states of individual members
are often defined in relation to rest of
swarm

- ROS messages have velocity
vectors, point clouds and arrays from
laser scans and other sensors,
matrices representing occupancy
grid maps...

https://www.youtube.com/watch?v=ezTayb76x9U

https://www.youtube.com/watch?v=ezTayb76x9U

B

Motivating Example — Ground Swarm IVERSI

7VIRGINIA

[timestamp:83.384
[distance matrix

0.8
1.04 0.77
0.57 0.73

ftimestamp:83.392
distance matrix

0.8
1.04 0.77
0.57 0.73

ftimestamp:83.399
[distance matrix
0.8
0.8
1.04 0.77

timestamp:361.041
distance matrix

0.7
2l
1ot}

timestamp:361.049
distance matrix

0.7
21
1.4

timestamp:361.057
distance matrix

START
- Randomly populated in open world
- Swarm members’ actions determined
according to local rules

FINISH
- Evenly dispersed
- Microadjustments due to noise from own
system and external environment

Motivating Example — Ground Swarm

IVERSITY
7VIRGINIA

imestamp:83.384
distance matrix
0.8
0.8
1.04 0.77
0.57 (2),7/53

T R - = - (Cell-wise equivalence
distance matrix - —— S
(¢] 0.8

oo or o5 | ; S - dist_matrix[i][j] == dist_matrix[j][i] "
057 073 S . . - Arayrelations
s R P - dist_matrix[il[j] = A[2"i+j]

0.8 0 0.77

Lod 0 e o6 - - | - Approximate temporals
- - dist_matrix]i][j] <€)dist_matrix[i][j] where
— next operator is not strictly enforced !

distance matrix

| Missing Desired Invariants
inestanp:361.049 . e -~ - Linear algebraic invariants
istance matrix e e = — .

of %0 11 o - - isSparse == False
21 ; o S = =
L . / - Subswarms
- Subswarm ={(0,0), (1,1), (2,2), (3,3)}
- Relational approximate temporals

- norm<€)norm t ¢

[1] Michael D. Ernst, Jake Cockrell, Wiliam G. Griswold, and David Notkin. Dynamically discovering likely program invariants to support program evolution.[EEE
Transactions on Software Engineering, 27(2):99-123, February 2001.

[2] Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014. DIG: A Dynamic Invariant Generator for Polynomial and Array Invariants. ACM Trans. 6
Softw. Eng. Methodol. 23, 4, Article 30 (September 2014), 30 pages. DOI:https://doi.org/10.1145/2556782

[3] Mark Gabel and Zhendong Su. Javert: fully automatic mining of general temporal properties from dynamic traces. In SIGSOFT FSE, 2008.

timestamp:361.057

Relational Data Structures IVERSITY

7VIRGINIA

Scalar Vectors Matrices Tensors Graphs

State of the art
A = null _
X <20 @rrng;rﬁ\)r s
B—->A

Proposed Work

mat islnvertible tensor isSparse graph isAcyclic
graph isComplete

Problem Space

5 DATA STRUCTS
GITHUB REPOSITORY COMMITS | SLOC | LANG. ROS? | SIM? OF INTEREST
yangliu28/swarm_robot_ros_sim 198 3,152 C++ X Gazebo R
xuefengchang/micros_swarm_framework 182 8,990 C++, python | Y Rviz 18
lucascoelhof/voronoi_hsi 76 1,484 python Y Stage 19
or-tal-robotics/mecl_pi 98 706 python Y Rviz 10
terna/SLAPP3 145 5,772 python N Turtle |
hanruihua/slave_multirobot 59 6,444 G4+ Y Matplotlib 11
raoshashank . g . .
Multi—I{obot{Decelltralized—Grapll—Exp]oration 83 1,435 C+t+, python | ¥ Gazelio
USC-ACTLab/crazyswarm 341 5,912 C++ Y Cfsim 10
mehdish89/UR5_Cooperative_Transform 582 4,238 C++ Y Rviz, Gazebo | 12
david-alejo/thermal _ws 52 6,469 python Y Marble i
aarow1/cooperative_cable_transport_vision 197 3,442 C++ Y Rviz 12
awerenne/multi-robot-mapping 75 3,667 python N pygame b
CARMinesDouai
Mult iRobotExplo/ra(,ionl-"ackagos 104 56,504 Ct++ Y Gazebo 4
Koll-Stone/Efficient _sche_cov 47 774 python N Matplotlib 7
ThomDietrich/multiUAV-simulation 319 4,867 C++ Y OMNet++ b
afrl-rq/OpenUxAS 706 464,238)| C++, python | Y Amase D5
mrsd16teamd/MrdRRT 103 1,770 python Y matplotlib 9
correlllab /cu-droplet 770 12,008 C++ N Qt 10
aau-ros/aau_multi_robot 102 15,834 C++ Y N D6
gondsm/mrgs 363 2,315 C++ Y N 0
BasJ93/Minor AR_MultiRobot 244 4,088 C++, python | Y N D
mzahana/formation 80 1,331 python Y Gazebo 3
bramtoula/multi_robot _SLAM _separators 189 4,694 -+ Y N b
jimjing/MandM 65 2,831 python Y Rviz 3
umass-rbr /multiagent-sas 163 1,257 python Y N 7

Table 1: Table of swarm projects.

IVERSITY]
JVIRGINIA

Swarm projects collected
from Github

Measurably mature

systems
- ~50 commits
- ~750 SLOC
- Had simulation
- Reference papers

Data structures of interest
- Nonzero count for all projects
- Average 9.92 per project

Problem Space IVERSITY
JVIRGINIA

Space of potential
variables

Other Vars Rel Vars

Scalars

Vectors

Strings Graphs

Booleans Tensors

Point
Clouds

Others

Problem Space

Space of Vars e
potential Sars o ings vectors ohe
variables_ Beoleans o

Vectors

Graphs
Tensors

Point
Clouds

A

o=

- v =

IVERSITY
7VIRGINIA

A

o=
- v =

Problem SpaCe IVERSITY

7VIRGINIA

Space of Vars e
potential Sars o ings vectors ohe

Booleans

variables

Tensors

Point
Clouds

e oNE)
I

Problem SpaCe IVERSITY

7VIRGINIA

Space of Vars e
potential Sars o ings vectors ohe

variables\ Booleans

e oNE)
I

Problem SpaCe IVERSITY

7VIRGINIA

Space of Vars e
potential Sars o ings vectors ohe

variables\ Booleans

A

o=

B

ApproaCh -- Overview IVERSITY

7VIRGINIA

1. Investigate potentially useful invariant patterns through

code analysis.
a. How are data structures of interest operated upon?
b. How are they used?

2. Expand upon existing inference techniques according to

potentially useful patterns.
3. Optimize inference techniques for the domain of relational

data structure invariants.

14

Approach -- Patterns

1. Investigate potentially useful invariant patterns.

Invariant Type

Pattern

Explanation

Lin. Alg.

Lin. Alg.

isSquare

isSymmetric

x-dimension of data structure == y-dimension of data structure.
Only applicable to 2D data structures.

Value at (x,y) equals value at (x,y) of transposed data
structure. Applicable to 1D and 2D structures.

Lin. Alg.

isUpperTriangular

Data structure only contains nonzero values above the diagonal.
Only applicable to 2D data structures.

Lin. Alg.

isDiagonal

Data structure only contains nonzero values on the diagonal.

distribution

distribution

A.gaussian(y, o)

Only applicable to 2D data structures.
‘ P P For data structure A, AA~!' = L. Only applicable to 2D data
Lin. isInvertible '
structures.
Lin. A isPositive All values in data structure are nonnegative.
Lin. isLinearlyIndependent | Data structure has full rank.
Li Invariants on the norm values of a data structure. Must be
Lin. / norm n . e
combined with a bound, distribution, or temporal operator.
Lin. eigs Must be combined with a bound, distribution, or temporal operator.
Lin. ! rank Must be combined with a bound. distribution, or temporal operator.
Lin. / tr Must be combined with a bound, distribution, or temporal operator.
Lin. / isComplex Data structure contains complex values.
. . - Data structure is a Hermitian matrix.
Lin. isHermitian .
y applicable to 2D data structures.
Lin. A determinant Must be combined with a bound. distribution, or temporal operator.

x values follow a gaussian distribution with mean p and standard
deviation .
Maximum value of data structure is equal to x.

distribution

Minimum value of data structure is equal to x.

distribution

mean =

Mean value of data structure is equal to x.

distribution

median

Median value of data structure is equal to x.
Mode value

f data structure is equal to x. Mode must occur more than

cistEbeion HIode ==ix once in individual data structures.
bound / A is equivalent to B within a user-defined epsilon ball.
bound A< A is less than or equal to B within a user-defined epsilon ball.
bound A>B A is greater than or equal to B within a user-defined epsilon ball.
bound A<B A is less than B within a user-defined epsilon ball.
bound A>B A is greater than B within a user-defined epsilon ball.
e —— (@1, 1), o @y yu)} The (x,y) \'(.lll\(‘,ﬁ in the set hold the same values within an epsilon ball
18 at all steps in trace.
temporal OAopB op holds for current A and next B at all steps in the trace.
Eventually, value A appears in trace. Must be combined with a bound
temporal & A g
or distribution operator.
tepiparal O A Eventually, value A always appears in trace. Must be combined

with a bound or distribution operator.

Table 5: Currently supported invariant patterns.

Organized into 5 families
- Extensible

Not exhaustive
- Generally applicable

0

o

BlllIE
IVERSITY

IRGINIA

patterns rather than overly

specific to systems in

problem space

Chosen for applicability to

relational data structures, swarm
behavior, or commonly used to

describe number sets

15

Approach -- Patterns

IVERSITY]
JVIRGINIA

1. Investigate potentially useful invariant patterns.

Linear Algebraic
Invariant Patterns

e g e | = veeman
Lin. Al isSquare x-dimension of data structure == y-dimension of data structure.
in. Alg. isSquare . ;
© e Only applicable to 2D data structures.
Lin. Al S - Value at (x,y) equals value at (x,y) of transposed data
in. Alg. isSymmetric . p
’ = . structure. Applicable to 1D and 2D structures.
< i . Data structure only contains nonzero values above the diagonal.
Lin. Alg. isUpperTriangular :
Only applicable to 2D data structures.
. e Data structure only contains nonzero values on the diagonal.
Lin. Alg. isDiagonal .
i i Only applicable to 2D data structures.
. i 5 For data structure A, AA~!' = I. Only applicable to 2D data
Lin. Alg. isInvertible - ¥ apphca o
structures.
Lin. Alg. isPositive All values in data structure are nonnegative.
Lin. Alg. isLinearlylndependent | Data structure has full rank.
. Invariants on the norm values of a data structure. Must be
Lin. Alg. norm . . .
i combined with a bound, distribution, or temporal operator.
Lin. Alg. eigs Must be combined with a bound, distribution, or temporal operator.
Lin. Alg. rank Must be combined with a bound, distribution, or temporal operator.
Lin. Alg. trace Must be combined with a bound, distribution, or temporal operator.
Lin. Alg. isComplex Data structure contains complex values.
Lin. Al isHermiti Data structure is a Hermitian matrix.
in. Alg. isHermitian .
B = Only applicable to 2D data structures.
Lin. Alg. determinant Must be combined with a bound, distribution, or temporal operator.

[1] https://math.mit.edu/~gs/linearalgebra/linearalgebrab_6Great.pdf

Family of invariants not present in
previous work

Linear algebra meant to characterize
high-dimensional data structures

Used in basic proofs and theorems or
came up in code analysis

Can be combined to point to theorems

- E.g. Dimension theorem!!

16

https://math.mit.edu/~gs/linearalgebra/linearalgebra5_6Great.pdf

Approach -- Patterns

IVERSITY]
JVIRGINIA

1. Investigate potentially useful invariant patterns.

__Linear Algebraic Invariant Patterns

. . x-dimension of data structure == y-dimension of data structure.
Lin. Alg isSquare .
Only applicable to 2D data structures.
Lin. Al s Value at (x,y) equals value at (x,y) of transposed data
1. Alg. sSymmetric . :
‘ = : structure. Applicable to 1D and 2D structures.
Lin. Ale isUpperTrianeular Data structure only contains nonzero values above the diagonal.
e SEPE Te Only applicable to 2D data structures.
. C Data structure only contains nonzero values on the diagonal.
Lin. Alg isDiagonal s {
Only applicable to 2D data structures.
: : 3 For data structure A, AA~" = 1. Only applicable to 2D data
Lin. Alg. isInvertible
structures.
Lin. Alg isPositive All values in data structure are nonnegative.
Lin. Alg isLinearlylndependent | Data structure has full rank.
. Invariants on the norm values of a data structure. Must be
Lin. Alg norm R . .
combined with a bound, distribution, or temporal operator.
Lin. Alg eigs Must be combined with a bound, distribution, or temporal operator.
Lin. Alg. rank Must be combined with a bound, distribution, or temporal operator.
Lin. Alg. trace Must be combined with a bound, distribution, or temporal operator.
g 1% T
Lin. Alg. isComplex Data structure contains complex values.
Fii., Al SRRt Data structure is a Hermitian matrix.
e EEh e Only applicable to 2D data structures.
Lin. Alg. determinant Must be combined with a bound, distribution, or temporal operator.

isSymmetric == True

- Potential optimization point
isPositive == True

- Check for bugs
Norm == 2.828

- Measure of dispersion
Determinant == -4.0

- Measure of average variance

17

Approach -- Patterns

IVERSITY]
JVIRGINIA

1. Investigate potentially useful invariant patterns.

Distributions
Invariant Patterns

N ; x values follow a gaussian distribution with mean g and standard
distribution A.gaussian(p, o) o
deviation o.
distribution max == X Maximum value of data structure is equal to x.
distribution min == x Minimum value of data structure is equal to x.
distribution mean == X Mean value of data structure is equal to x.
distribution median == x Median value of data structure is equal to x.
w o Mode value of data structure is equal to x. Mode must occur more than
distribution mode == x e
once in individual data structures.
) e TG L P e
timestep : 0 timestep:1 ... timestep : n timestep : n+1

Account for noise inherent in robotic
systems

Characterize values occurring in data
structures

- max ==
- min ==
mat.gaussian(1, 1)

18

Approach -- Patterns IVERSITY

7VIRGINIA

1. Investigate potentially useful invariant patterns.

Account for noise inherent in robotic
Bounds systems

Invariant Patterns Epsilon comparison as defined by user

bound A==B A is equivalent to B within a user-defined epsilon ball.

bound A<B A is less than or equal to B within a user-defined epsilon ball.
bound A>B A is greater than or equal to B within a user-defined epsilon ball.
bound A<B A is less than B within a user-defined epsilon ball.

bound A>B A is greater than B within a user-defined epsilon ball.

- determinant < norm
0 2 0 2 0 2 0 2 - mean ==
2 2 0 - mean < max
— — — — - mean <rank

timestep : 0 timestep:1 ... timestep : n timestep : n+1
19

Approach -- Patterns IVERSITY

7VIRGINIA

1. Investigate potentially useful invariant patterns.

- Parts of the data structure that hold the
same (or similar) values at any given

Subswarms timestep
Invariant Patterns - Reveal interdependent values/cells in
‘ The ()\x) values in the set hold the same vjdlucs within an epsilon ball ‘ data Stru Ctu re

subswarms {(x1, y1), - (@n, yn)} i 1] G608 -GG

0 2 0 2 0 1 0 11 - subswarm ([0,0], [1,1])
2 0 2 0 1 0 11 0 - subswarm ([0,1], [1,0])

timestep : 0 timestep:1 ... timestep : n timestep : n+1 20

Approach -- Patterns IVERSITY

7VIRGINIA

1. Investigate potentially useful invariant patterns.

- Arrived at through analysis of swarm
behavior

Temporals Next: evolution of swarm behavior
Invariant Patterns .
A over runtime
temporal OAopB op holds for current A and next B at all steps in the trace. . .
temporal O A Eventually, value A appears in trace. Must be combined with a bound - Eventua”y reaChlng a Setp0|nt
‘ ‘ or distribution operator. .
t - o0 A Eventually, value A always appears in trace. Must be combined - Eventua”y alwayS reaChlng a
empora with a bound or distribution operator.

stable equilibrium

- mean €)mean
- Oomax==0.7
- $Oonorm==0.9

21
timestep : 0 timestep:1 ... timestep : n timestep : n+1

A

Big

ApproaCh -- Overview IVERSITY

7VIRGINIA

2. Expand upon existing inference techniques.
3. Optimize inference techniques for the domain of relational
data structure invariants.

]
Trace(s) Inference Engine
] 7\ 1. Preprocess trace(s) Invariants
— . —f
/ 2. Gather invariant support ﬂ
Patterns 3.Combine redundant invariants m

| Y 22

Approach -- Inference IVERSITY

7VIRGINIA

2. Expand upon existing inference techniques.

Algorithm 2: Inference for “eventually always”
temporal operator

Algorithm 1: Inference for linear algebraic oper-

ators Input: trace, patterns
Input: trace, patterns Output: results
Output: results 1 results = dict();
1 results = di(‘t(): 2 foreach pattern in patterns do
2 foreach pattern in patterns do 3 | instantiated = False;
3 4 foreach record in trace do
3 foreach record in trace do S . e
% 5 highest_possible_conf_interval = 1 -
4 if pattern.eval(record) then 1 .
_— : . oY .. (trace.length—trace.index(record))?’
5 results.put(pattern, True); 6 if pattern.eval(record) then
pattern.count++; - pattern.count-+-+

6 else 8 instantiated = True;

7 ‘ results.put(pattern, False); break; 9 else if not pattern.eval(record) then

8 end 10 | instantiated = False;

N end 11 end

e ;) s 1 12 if highest_possible_conf-interval < 0.95
10 if results.get(pattern) A 1 — T then
0.95 then 13 | results.put(pattern, False); break;
11 | results.put(pattern, False); 14 end
12 end 15 end
16 results.put(pattern, True);
13 end e)
17 end 23

14 return results; 18 return results:

Approach -- Inference

IVERSITY]
JVIRGINIA

2. Expand upon existing inference techniques.

Algorithm 1: Inference for linear algebraic oper-
ators

Input: trace, patterns
Output: results

1 results = dict();

2 foreach pattern in patterns do

3 foreach record in trace do

4 if pattern.eval(record) then

5 results.put(pattern, True);
pattern.count—+-;

6 else

7 ‘ results.put(pattern, False); break;

8 end

9 end

10 if results.get(pattern) A 1 —
0.95 then

<

1
pattern.count?

11 | results.put(pattern, False);
12 end
13 end

14 return results;

Input: trace, set of patterns

Output: hashtable containing True/False
evaluation for all possible linear algebraic
invariants

isinvertible == True

General steps:

For each pattern, iterate through trace
Pattern holds at that step — increment
support for that pattern

Pattern does not hold at that step —
abort evaluation

End of the trace has been reached —
Check that support is sufficient

24

Approach -- Inference

IVERSITY]
JVIRGINIA

2. Expand upon existing inference techniques.

predicate: matrix.max <= 0.7

Algorithm 1: Inference for linear algebraic oper-
ators

Input: trace, patterns
Output: results
1 results = dict();
2 foreach pattern in patterns do
3 foreach record in trace do

4 if pattern.eval(record) then

5 results.put(pattern, True);
pattern.count—+-;

6 else

7 ‘ results.put(pattern, False); break;

8 end

9 end

1

pattern.count?

10 if results.get(pattern) A 1 —
0.95 then

<

11 | results.put(pattern, False);
12 end
13 end

14 return results;

timestep :

timestep :

timestep :

timestep :

n+1

Trace

Pattern Confidence
matrix.max = 1-(1/1%)=0

0.2

matrix.max = 1-(1/2%)=0.75
0.3

matrix.max = 1-(1/n?)=..

0.7

matrix.max = 1-(17(n+1)%) = ...
0.7

25

Approach -- Inference IVERSITY

7VIRGINIA

2. Expand upon existing inference techniques.

Algorithm 2: Inference for “eventually always”

‘;mw‘“l operator - Input: trace, set of patterns
nput: trace, patterns . .
et - Output: True/False evaluation for all possible
1 results = dict(); i ;
2 foreach pattern in patterns do eventua”y always Invarlants
3 instantiated = False; - Qo IS|nvel'th|e
4 foreach record in trace do .
5 highest_possible_conf_interval = 1 - - General StepS.

T E e - For each pattern, iterate through trace
6 if pattern.eval(record) then .
. s e - If pattern holds at that step, increment
8 instantiated = True; su pport for that pattern
9 else if not pattern.eval(record) then .
v [instantiated = False: - Pattern does not hold — is there enough
u end of the trace left for it to receive sufficient
12 if highest_possible_conf-interval < 0.95

then support?
13 | results.put(pattern, False); break;
14 end
15 end
16 results.put(pattern, True);
17 end 26

18 return results;

Approach -- Inference

IVERSITY]
JVIRGINIA

2. Expand upon existing inference techniques.

Algorithm 2: Inference for “eventually always”

temporal operator

Input: trace, patterns
Output: results

1 results = dict();

2 foreach pattern in patterns do

3 instantiated = False;
4 foreach record in trace do
5 highest_possible_conf_interval = 1 -
(h'ru'r,l(‘ngth—fru}uuul(;l‘(ru ord))? ;
6 if pattern.eval(record) then
& pattern.count+-+;
8 instantiated = True;
9 else if not pattern.eval(record) then
10 | instantiated = False;
11 end
12 if highest_possible_conf-interval < 0.95
then
13 | results.put(pattern, False); break;
14 end
15 end
16 results.put(pattern, True);
17 end

18 return results;

timestep :

timestep :

timestep :

timestep :

n+1

predicate: 0o matrix.max == 0.7
Trace

Pattern Confidence
matrix.max = 1-(1/1%)=0
0.2
matrix.max = 1-(1/1%)=0
0.3
matrix.max = 1-(1/1%)=0

0.7

matrix.max = 1-(1/2%)=0.75
0.7

27

A

o=
- v =

Approach -- Optimization IVERSITY

7VIRGINIA

3. Optimize inference techniques for the domain of relational
data structure invariants.

Occupancy grid from one of the three case
study projects

In code: 80 x 80 cell grid

Visually: 20 x 20 cell grid

Want to “zoom out” and deal with an
abstracted version of this occupancy grid

N.b. This is not the only optimization technique
s o that could be applied to this occupancy grid

28

A

Big

Research Questions IVERSITY

7VIRGINIA

1. Are the posited invariant patterns for relational data structures upheld in
practice by robotic systems with high interdependence (swarms)?

2. Can these invariant patterns be used to differentiate between successful
and failed behaviors of these swarms?

3. Do the findings for the above two questions suggest the need for further
patterns or further expansion of inference techniques?

4. What is the cost associated with generating the posited families of
invariants?

29

A

Big

Research Questions IVERSITY

7VIRGINIA

1. Are the posited invariant patterns for relational data structures upheld in
practice by robotic systems with high interdependence (swarms)?

2. Can these invariant patterns be used to differentiate between successful
and failed behaviors of these swarms?

3. Do the findings for the above two questions suggest the need for further
patterns or further expansion of inference techniques?

30

Study -- Setup

1. Run system in simulation using unperturbed configuration.
2. Run again in adversarially perturbed configuration.

3. Diff invariants generated for both perturbed and
unperturbed configurations.

31

Study -- Results

IVERSI
7VIRGINIA

Invariant Invariant Explanation Obstacle Mountain

Type Violated? | Violated?

Shape isSquare==True Data structure is a square matrix. N N

Lin. Alg. isSymmetric==True Data structure is a symmetric matrix. N N

Lin. Alg. isInvertible=="True Data structure 1s invertible. N N

Lin. Alg. isPositive==True Data structure is positive, i.e. contains only positive values. N N

Lin. Alg. isLinearlyIndependent==True Data structure has linearly independent columns. N N

Lin. Alg. 7.52<= norm <=28.30 The norm of the data structure falls between these values. N Y

Norm values of the data structure follow a gaussian
Lin. Alg. norm.gaussian(24.28, 5.31) distribution with a mean of 24.28 and N Y
standard deviation of 5.31
. rank == 10 Data structure has rank==10. This makes the gaussian

Lin. Alg. < g g N Y
rank.gaussian(10.0, 0.0) invariant redundant.

Lin. Alg. trace == OAAU Pata.structurc has trace==0. This makes the gaussian N N
trace.gaussian(0.0, 0.0) invariant redundant.

Lin. Alg. isHermitian==True Data structure is a Hermitian matrix. N N

Lin. Alg. -56.96<= determinant <=-0.01 Data structure has determinant between these values. N Y

bound 0.66<= mean <=2.30 Mean of data structure falls between these values. N Y

S iz en whi s Mean of data structure follows a gaussian distribution

distribution. | ‘mean;gaussian(1.98,0.42) with a mean of 1.98 and a standa%d deviation of 0.42. N X

bound 0.655<= median <=2.09 Median value of data structure falls between these values. N Y

distribution | median.gaussian(1.78, 0.40) N Y

bound 1.33<= maximum <=6.28 Maximum value of data structure falls between these values. | N ¥

distribution | maximum.gaussian(5.44, 1.13) N Y
minimum == 0.0 Minimum value of the data structure is zero. This makes

bound L X L . N N
minimum.gaussian(0.0, 0.0) the gaussian invariant redud&nt.

e subswarm: (0,0) [6)) (2,2) (3,3) . : .

subswarm (4.4) (5,5) (6,6) (7,7) (8.8) (9,9)] Subswarm with (x,y) entries found. N N

“temporal TD Next: NOTMGT = NOTMGTTT | Data STUCtUrC 15 cventually always Not sparse. X X

temporal {0 isSparse==False Data structure is eventually always not sparse. N N

temporal T norm——28.30 Norm 1s eventually always 28.30. N Y

temporal &0 determinant==-56.96 Determinant is eventually always -56.96. N Y

Lemgoral 0 mode==0.69 Mode value in data structLge is evemuallx always 0.69. Y Y

Table 2: Invariants generated for distance matrix in yangliu control loop over one successful run.

Results

Invariant Invariant Explanation Obstacle Mountain
Type Violated? | Violated?
Shape isSquare=="True Data structure is a square matrix. N N
Lin. Alg. isSymmetric==True Data structure is a symmetric matrix. N N
Lin. Alg. isInvertible=="True Data structure 1s invertible. N N
Lin. Alg. isPositive==True Data structure is positive, i.e. contains only positive values. N N
Lin. Alg. isLinearlyIndependent==True Data structure has linearly independent columns. N N
Lin. Alg. 7.52<= norm <=28.30 The norm of the data structure falls between these values. N Y
Norm values of the data structure follow a gaussian
Lin. Alg. norm.gaussian(24.28, 5.31) distribution with a mean of 24.28 and N Y
standard deviation of 5.31
. rank == 10 Data structure has rank==10. This makes the gaussian
Lin. Alg. rank.gaussian(10.0, 0.0) invariant redundant. ¢ s ¥
Lin. Alg. trace = ():U Pata'structurc has trace==0. This makes the gaussian N N
trace.gaussian(0.0, 0.0) invariant redundant.
Lin. Alg. isHermitian==True Data structure is a Hermitian matrix. N N
Lin. Alg. -56.96<= determinant <=-0.01 Data structure has determinant between these values. N Y
bound 0.66<= mean <=2.30 Mean of data structure falls between these values. N Y
S iz en whi s Mean of data structure follows a gaussian distribution
distribution | ‘mean.gaussian(1.98, 0.42) with a mean of 1.98 and a standa%d deviation of 0.42. N X
bound 0.655<= median <=2.09 Median value of data structure falls between these values. N Y
distribution | median.gaussian(1.78, 0.40) N Y
bound 1.33<= maximum <=6.28 Maximum value of data structure falls between these values. | N ¥
distribution | maximum.gaussian(5.44, 1.13) N Y
minimum == 0.0 Minimum value of the data structure is zero. This makes
bound L X L . N N
mlmmum.gauss_lan(oﬂ. 0.0) the gaussian invariant redudﬁnt.
subswarm ?XT)W(Z;;?) (E)OBO)) (2171)) (;282)) ((()3,93)% Subswarm with (x,y) entries found. N N
“temporal TD Next: NOTMGT = NOTMGTTT | Data STUCtUrC 15 cventually always Not sparse. X X
.. 0O is. a - ie - a , ra a 3 N N
temporal {0 norm==28.30 Norm is eventually always 28.30. N 4
temporal [ou] dctcrlllilla!lﬁ::ﬁ)()".()G Determinant is eventually always -56.96. - N Y
temporal 0 mode==0.69 Mode value in data structure is eventually always 0.69. Y’ ¥;

Table 2: Invariants generated for distance matrix in yangliu control loop over one successful run.

IVERSI
7VIRGINIA

Posited invariants are upheld
Some invariants can distinguish
between some successful and
failed runs

Could expand library to better
distinguish between minimal failure
and catastrophic failure

33

A

Big

Research Questions IVERSITY

7VIRGINIA

1. Are the posited invariant patterns for relational data structures upheld in
practice by robotic systems with high interdependence (swarms)?

2. Can these invariant patterns be used to differentiate between successful
and failed behaviors of these swarms?

3. Do the findings for the above two questions suggest the need for further
patterns or further expansion of inference techniques?

34

Summary IVER

Contributions

Inference Engine

1. Preprocess trace(s)

- Expanded inference techniques

- Optimization for larger data structures

- Benchmark of swarm systems

Future Work

- Apply approach to new systems

- Heterogeneous cooperative robotic systems
- Jointed robotic arms
- Neural networks

- Expanded pattern library

- Approximate pattern matching

I.,

Thank You!
Questions

. !

Readings

Invariants — Focus Readings IVERSITY

7VIRGINIA

1. Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst,and Arvind Krishnamurthy. Inferring models of concurrent systems from logs of their
behavior with csight. In Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, page 468-479, New York,
NY, USA, 2014. Association for Computing Machinery.

2. Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy: Dynamic symbolic execution for invariant inference. In Proceedings of
the 30th International Conference on Software Engineering, ICSE '08, page 281-290, New York, NY, USA, 2008.Association for Computing
Machinery.

3. Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discovering likely program invariants to support
program evolution. IEEE Transactions on Software Engineering, 27(2):99-123, February 2001.

4. Mark Gabel and Zhendong Su. Javert: fully automatic mining of general temporal properties from dynamic traces. In SIGSOFT FSE, 2008.

5. Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. Dig: A dynamic invariant generator for polynomial and array
invariants. ACM Trans. Softw. Eng. Methodol., 23(4):30:1-30:30, September 2014.

6. Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das. Perracotta: Mining temporal api rules from imperfect
traces. In Proceedings of the 28th International Conference on Software Engineering, ICSE '06, pages 282—291, 2006.

38

Invariants — Background Readings IVERSITY

7VIRGINIA

1. Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. A learning-to-rank based fault localization approach using likely invariants. In
Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016, page 177-188, New York, NY, USA, 2016.
Association for Computing Machinery.

2. Hengle Jiang, Sebastian G. Elbaum, and Carrick Detweiler. Inferring and monitoring invariants in robotic systems. Auton. Robots,
41(4):1027-1046, 2017.

3. Tien-Duy B. Le and David Lo. Deep specification mining. In Proceedings of the 27th ACM SIGSOFT- International Symposium on Software
Testing and Analysis, ISSTA 2018, page 106—117, New York, NY,USA, 2018. Association for Computing Machinery.

4. L. Grunske. Specification patterns for probabilistic quality properties. In 2008 ACM/IEEE 30th International Conference on Software
Engineering, pages 31-40, May 2008.

39

IVERSITY
JVIRGINIA

Supplementary Slides

Approach -- Optimization IVERSITY

7VIRGINIA

3. Optimize inference techniques for the domain of relational
data structure invariants.

Algorithm 3: Optimization pseudocode

Input: trace, factor
Output: new_trace

1 size = trace[0].rows x trace[0].columns / factor; 8
2 ratio = round(trace[0].rows / trace[0].columns);
3 rows = m 5
4 cols = m
5 new_trace = [|; r
6 foreach matriz in trace do
7 new_matrix = [rows||cols]; 2
8 foreach cell in new_matriz do
9 nearest_cells = get_nearest_cells(cell.row, I
cell.col, factor, matrix);
10 if matriz.type is int V matriz.type is bool
then ~ °
11 | cell = max(nearest_cells); o o
12 else
13 | cell = avg(nearest_cells); . a
14 end
15 end N N
16 new_trace.append(new_matrix); = ; - - - = - = o 41
17 end

18 return new_trace;

Approach -- Optimization

IVERSITY]
JVIRGINIA

3. Optimize inference techniques for the domain of relational

data structure invariants.

Algorithm 3: Optimization pseudocode

sWw N =

© o N«

10

Input: trace, factor
Output: new_trace

size = trace[0].rows x trace[0].columns / factor;
ratio = round(trace[0].rows / trace[0].columns);
rows = m
cols = m
new_trace = [[;
foreach matriz in trace do
new_matrix = [rows||cols];
foreach cell in new_matriz do
nearest_cells = get_nearest_cells(cell.row,
cell.col, factor, matrix);
if matriz.type is int V matriz.type is bool
then
| cell = max(nearest_cells);
else
| cell = avg(nearest_cells);
end
end
new_trace.append(new_matrix);
end
return new_trace;

42

Study -- Results for Case Study #2

ITn;rszlant Invariant Explanation Violated?

Lin. Alg. isPositive==True Data structure is positive, i.e. contains only positive values. | N

Lin. Alg. isSymmetric==False Data structure is not a symmetric array. N

Lin. Alg. isComplex==False Data structure contains to complex numbers. N

Lin. Alg. isHermitian==False Data structure is not a Hermitian matrix. N

Lin. Alg. isSparse==False Data structure is not sparse. N

Lin. Alg. rank==1 Data structure rank is 1. N

bound 99.104 < norm < 123.333 Norm of the data structure falls between these values Y
Norm values of the data structure follow a gaussian

distribution = norm.gaussian(111.480, 7.964) distribution with a mean of 111.480 and L4
standard deviation of 7.964

bound 3.034 < mean < 3.670 Mean of data structure falls between these values b4
Means of the data structure follow a gaussian

distribution = mean.gaussian(3.357, 0.205) distribution with a mean of 3.357 and Y
standard deviation of 0.205

bound 2.505 < median < 2.638 Medians of data structure fall between these values Y
Medians of the data structure follow a gaussian

distribution = median.gaussian(2.567, 0.040) distribution with a mean of 3.357 and Y
standard deviation of 0.205

bound 8.060 < maximum < 11.210 Maxima of data structure fall between these values ¥
Maxima of the data structure follow a gaussian

distribution | maximum.gaussian(10.536, 1.105) | distribution with a mean of 10.536 and Y
standard deviation of 1 105

bound 0.837 < minimum < 0.873 Minima of data structure fall between these values Y

distribution

temporal

minimum.gaussian(0.857, 0.006)

O rank@t == rank@t+1

Minima of the data structure follow a gaussian
distribution with a mean of 0.857 and
standard deviation of 0.006

Next rank is equal to the preceding rank.

mean N, std Y

N

Table 3: Invariants from Multi-Robot-Exploration-Graph project for LaserScan array.

0

IVERSITY
IRGINIA

Study -- Results for Case Study #3

IVERSITY]
TRGINIA

(b) 20 seconds

tyaxiant Invariant Explanation
Type
Lin. Alg. isSquare=="True Data structure is a square matrix.
Lin. Alg. isPositive==True Data structure is positive, i.e. contains only positive values.
Lin. Alg. isLinearlyIndependent==False Data structure has linearly independent columns.
Lin. Alg. isHermitian==False Data structure is not a Hermitian matrix.
Lin. Alg. isSparse=="True At least half of values in data structure are zero.
bound 8 < rank < 45 Rank of data structure falls between these values.
S . s Fw Rank of data structure follows a gaussian distribution
distributian. | rank.gaussian(44.026, 5.928) with a mean of 44.026 and a stan?lard deviation of 5.923. g e
bound 1897.367 < norm < 4602.173 Norm of data structure falls between these values.
S : . e Norm of data structure follows a gaussian distribution
disfribulion | ‘morgpanssian(4530.904, 432.:066) with a mean of 4530.994 and a st:ndar(l deviation of 432.966.
bound 5.625 < mean < 33.094 Mean of data structure falls between these values. (a) Initialized
e . e e e Mean of data structure follows a gaussian distribution
distribution | ‘mean.gatissian(32.571, 4.397) with a mean of 32.371 and a stnu:"lur(l deviation of 4.397.
bound 2.505 < median < 2.638 Median of the data structure falls between these values.
bound median == 0.0 Median of data structure is 0.0.
bound maximum == 100.0 Maximum of data structure is 100.0.
bound minimum == (.0 Minimum of data structure is 0.0. s
0-1, 0-79), (2-9, 0), (2-9, 1), (2-9, 78),
2-9, 79), (10-16, 0-1), (10, 48-60),
subswarm Subswarm emerged with these (x,y) entries in data structure.

14, 44-65), (15, 43-66), (16, 43-66),

(
((
(11, 46-62), (12, 45-63), (13, 44-64),
(
(10-16, 78-79)

Table 4: Invariants from voronoi_hsi project OccupancyGrid matrix.

(¢) 1 minute

(d) Finished

44

Study -- Performance IVERSITY

7VIRGINIA

Invariant Generation Runtime

104 - -
— Unoptimized |
optimized | - Performance data collected from small
’ trace
103 L
/ .
T - 2500 instances of 8-cell by 8-cell
152 o matrices of type double
] /,/
2 P . - Subswarms invariant inference
" 10t el benefits most from parallelization
/'/
10°
103ist +ten{poral +subswarms
+linalg
+bounds

Figure 9: Runtime to compute invariants for 2501 2D

data structures derived from a 93-second trace. 45

e oNE)
I

Example -- Neural Network IVERSITY

7VIRGINIA

46

e oNE)
I

Weaknesses of Invariants IVERSITY

7VIRGINIA

47

Inference Processes

Original Instrumented
- program program }
Freq uentlst EVG ntA == True L] 22‘:;;(:: Invariants
Detect

» Instrument » Run > . 3 -
invariants

Test suite

Pattern
Specifications

BayeS|an P(EventA==True | EventhzTrue) == 66% Inference Engine

Trace - IRanking [
TME- | vaR | vac || b+ 1. Grammar Parsing [V Filtering NN

STAMP
> 2. Trace Processing
> 3. Bayesian Computation

~ Prior Posterior Probabilities
distributions .
P(A) P(AIB) = P(BIA) * P(A)
P(B)
User Input Javert Output

Pattern Templates Inference Rules
. Pattern
@ Pattern Mining Composition

Composed Patterns

Mark Gabel and Zhendong Su. Javert: fully automatic mining of general temporal properties from dynamic traces. In SIGSOFT FSE, 2008. 48
Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin. 2000. Quickly detecting relevant program invariants. In Proceedings of the 22nd international conference on Software engineering (ICSE '00). ACM, New York, NY, USA, 449-458.

See Slide 15 for further references

Temporal Event,, Event_, Event,, Event,, ... == True

Temporal

Filtering

Properties

N[INIVERSITY
JVIRGINIA

public class StackAr{

private Object [] theArray:; OBJECT INVARIANTS
private int topOfStack; this.theArray = null
this.topOfStack >= -1
public S‘rackAr'(int capaci‘ry) this.topOf Stack <= size(this.theArray[])-1
{

theArray = new Object[capacity I.
topOfStack = -1;

}
: . INVARIANTS AFTER THIS RETURN

pUth. O|?J€C'|’ '|'0p() return == this.theArray[this.topOf Stack]

if('SEmpTY()) return == this.theArray[orig(this.topOf Stack)]

return null; return == orig(this.theArray[post(this.topOf Stack)])

return theArray[topOfStack] return == orig(this.theArray[this.topOfStack])

} this.topOfStack >= 0
return |= null
eee 49
} Generated by Daikon from a Stack.Ar Java Class

Approach -- alternative slide to show algorithm gz

Expand upon existing inference techniques

predicate: matrixD.determinant = -56
eventuallyAlways(trace, pattern){

instantiated = False

foreach record in Trace
confidence = 1 - 1/(trace.len - trace.index(record))? E
if pattern.eval(record) 2

instantiated = True ’—1

Trace Pattern Confidence Instantiated Return

matrixD.det = 0

matrixD.det = -6
else

ol N E S N EL TR G

if confidence < 0.95 || instantiated==True

matrixD.det = 2
return False

return True
matrixD.det = 2

matrixD.det = 2

NNINNENN

Problem Space

Scalars

Var space

IVERSITY]
JVIRGINIA

Vectors Others

—
ﬁel Var Language

[

-
% ?\\ Environments

